Исследовательский проект на тему: «Природное электричество. Исследовательский проект «Электричество» для детей подготовительной группы Проект на тему электрический ток

Анна Юняткина

Так была выбрана тема для моего первого настоящего исследования !

У меня часто возникали вопросы : Как электричество заставляет гореть лапочки? Откуда берется электрический ток в розетке ? Как мои игрушки работают от батарейки , откуда в батарейке электричество ? И в чем разница между электрическим током и электричеством ?

И вот в конце первого учебного полугодия в рабочей тетради по «Окружающему миру» задание : «Соберите электрическую цепь и зарисуйте ее » . Папа с удовольствием согласился купить необходимый для этого «Электрический конструктор » . Когда цепь была собрана, он рассказал мне, как по ней движется электрический ток . И мне стало интересно, почему батарейку я свободно беру в руки, и ток не приносит мне вреда, а вот в розетку пальцы засовывать нельзя, током убьет?

После этого я для себя точно решила, что обязательно должна разобраться с возникающими у меня вопросами, про электричество и ток ! Что и послужило основанием для выбора темы исследования .

Гипотеза : Ток в электрической цепи бывает разным .

Для того чтобы проверить свою гипотезу мной была определена цель исследований и проведен ряд опытов.

Цель : Изучить электрические цепи с разными видами тока.

Для достижения поставленной цели мной по порядку были изучены все интересовавшие меня выше вопросы. Задачи :

1. Изучить природу .

2. Ознакомиться с принципом работы батарейки .

3. Узнать, как .

Для их решения я выполнила следующую работу :

1) спросила у папы и провела с ним опыты;

2) прочитала детские энциклопедии ;

4) искала информацию в Интернете;

5) просматривала познавательные мультфильмы про электричество .

Методы и приемы исследования : наблюдение, эксперимент.

Оборудование : Электрический конструктор , мультиметр.

Практическая значимость : результаты исследования позволят больше узнать об окружающем мире , помогут в повседневной жизни.

Результат работы представлен в виде презентации.

1. Природа электричества и электрического тока

Из мультфильма «Смешарики : Пин-Код : Электробитва » мне было уже известно, что еще в древней Греции греками было замечено : если янтарь потереть о шерсть, он начнёт притягивать к себе лёгкие предметы, находящиеся поблизости. Силу, притягивающую к себе предметы греки стали называть электричеством . Янтарь по-древнегречески называется электроном . От «электрона » - янтаря образовали слово электричество . Это первое знакомство людей с электричеством .

Сейчас ученые доказали : «Все, что нас окружает, состоит из элементарных частиц : протонов и электронов , у которых есть удивительное свойство, они имеют электрический заряд ».

Рис. 1. Протон и электрон

Протон – это положительно, а электрон отрицательно заряженная частица (рис. 1,2) .

Рис. 2. Протон и электрон

Электроны и протоны притягиваются друг к другу и образуют конструкцию под названием атом. Протоны находятся в ядре атома, вокруг протонов вращаются электроны (рис. 3) .

Рис. 3. Атом

При трении янтаря о шерсть частицы с атомов шерсти перескакивают на атомы янтаря (рис. 4) .

Рис. 4. Что происходит при трении

В результате чего шерсть потеряв часть своих электронов становиться заряжена положительно, а янтарь отрицательно. Отрицательно и положительно заряженные атомы начинают притягиваться друг к другу (рис. 5) . Такой вид электричества называется статическим.

Рис. 5. Статическое электричество

Если у одних атомов электронов переизбыток , то под действием электрических сил они устремляются туда, где электронов не хватает . Такой поток электронов и называется электрический ток (рис. 6) .

Рис. 6. Электрический ток

Я попробовала повторить рассказанный в мультфильме пример (рис. 7) .

Рис. 7. Опыт с янтарем

Потом я провела такой же опыт с линейкой : потерла линейку о шерсть, и кусочки бумаги притянулась к ней (рис. 8) .


Рис. 8. Опыт с линейкой

В моем опыте электроны с линейки «перескочили» на шерсть, и линейка притянула к себе бумагу, пытаясь «захватить» с нее электроны .

Я сделала вывод, что янтарь и линейка наэлектризовались , в результате чего возникло статическое электричество .

Выводы :

1) Одинаковые заряды отталкиваются, разные – притягиваются. Одинаково заряженные тела отталкиваются, противоположно заряженные – притягиваются.

2) Электричество получаемое в результате потери баланса положительно и отрицательно заряженных частиц называется статическим.

3) Когда много-много электронов «бегут» по проводнику в одном направлении, возникает электрический ток .

4) Электрический ток – это упорядоченное движение заряженных частиц.

2. Ознакомиться с принципом работы батарейки

Электричество может возникнуть не только при трении. Причиной возникновения тока может быть химическая реакция. Так устроены привычные нам батарейки.

Первая электрическая батарейка появилась в 1799 году. Её изобрел Алессандро Вольта (рис. 9) . Он же изобретатель источника постоянного электрического тока .

Рис. 9. Алессандро Вольта (1745 – 1827)

Батарейки бывают круглые, квадратные (рис. 10) .

Рис. 10. Разновидности батареек

Я рассмотрела строение и расскажу вам про пальчиковую батарейку. Её назвали так, потому что она похожа на пальчик. Снаружи я увидела, что с одного конца батарейки стоит знак «плюс» , а с другого «минус» (рис. 11) .

Рис. 11. Пальчиковая батарейка

Внутри современной батарейки два цилиндрика (анод +; катод -, вставленные один в другой. Между цилиндриками (плюсом и минусом) - специальный барьер (сепаратор, раствор или паста (рис. 12) .

Рис. 12. Строение обычной батарейки

От одного цилиндрика к другому и течет электрический ток (рис. 13) .

Рис. 13. Принцип работы батарейки

Например, от одного цилиндрика по проводу ток идет в лампочку и дальше по проводу подходит к другому цилиндрику (рис. 14) .

Рис. 14. Электро-схема

Для наглядности я с папой собрала, показанную выше, электрическую цепь . На рисунке 15 представлен результат проведенного опыта.

Рис. 15. Электрическая цепь в действии

Мы с папой попытались в домашних условиях сделать свою батарейку (рис. 16) .

Рис. 16. Батарейка своими руками

Для этого нам понадобились (рис. 17) :

Прочное бумажное полотенце;

Пищевая фольга;

Ножницы;

Медные монеты;

Маленькая лампочка;

Два изолированных медных провода.


Рис. 17. Что нужно

Как проводился опыт :

1. Растворили в воде немного соли.

2. Нарезали бумажное полотенце и фольгу на квадратики чуть крупнее монет.

3. Намочили бумажные квадратики в соленой воде.

4. Положили друг на друга стопкой : медную монету, кусочек фольги, снова монету, и так далее несколько раз. Сверху стопки должна быть бумага, внизу – монета.

5. Зачищенный конец одного провода подсунули под стопку, второй конец присоединил к лампочке. Один конец второго провода положили на стопку сверху, второй тоже присоединили к лампочке.

Лампочка не загорелась, зато загорелся диод (рис. 18) .



Рис. 18. Опыт с монетами

Диод горел еле-еле, и мы решили провести еще один опыт при помощи уксуса.

Для него нам потребовались (рис. 19) :

Уксусная кислота

Саморезы;

Медная проволка;

Маленькая лампочка;

Коробочки от «киндеров» ;

Изолированные провода.

Рис. 19. Что нужно

Как проводился опыт :

1. Соединили саморезы с медной проволокой (рис. 20) .


Рис. 20. Этап 1

2. Залили в «киндеры» уксус (рис. 21) .


Рис. 21. Этап 2

3. Вставили по очереди в коробочки от «киндеров» саморезы и медную проволку, так что бы в одном «киндере» была проволка, а в другом саморез (рис. 22) .


Рис. 22. Этап 3

4. Подсоединили один провод к саморезу, а второй к медной проволке (рис. 23) .


Рис. 23. Этап 4

5. Подсоединили провода к лампочке (рис. 24) .


Рис. 24. Этап 5

Лампочка не загорелась, а диод горел хорошо (рис. 25) .

Рис. 25. Этап 6

Так же ток возникает во фруктах и овощах. Я провела опыты с лимоном и картошкой.

В лимон и картошку воткнула медную и цинковую пластины и измерила напряжение вольтметром (рис. 26 и 27) .



Рис. 26. Опыт с лимоном




Рис. 27. Опыт с картошкой

Вольтметр показал, что и в лимоне и в картошке возник электрический ток с примерно одинаковым напряжением.

Трех лимонов мне оказалось достаточно, чтобы светодиод потихоньку загорелся без дополнительных источников тока. Добавив еще один лимон диод начал гореть в полную силу, но лампочка как и в предыдущих опытах не загорелась (рис. 28) .



Рис. 28. Опыт с лимоном

В опыте с картошкой, мы взяли 12 картофелин, но лампочка все равно не загорелась (рис. 29) .


Рис. 29. Опыт с картошкой

По проделанным опытам с лимоном и картошкой я сделала вывод, что электрический ток в овощах и фруктах появляется в результате химической реакции между металлом и содержащейся в овощах и фруктах кислотой.

Еще я узнала, как работает световой источник тока – солнечные батареи.

Солнечная батарея состоит из множества солнечных элементов, в каждом из которых энергия света непосредственно превращается в электрическую энергию . Это совсем несложно, только для изготовления солнечного элемента нужно найти вещество с подходящими свойствами.

Свет «выбивает» электроны из вещества , покрывающего пластины батареи и возникает электрический ток (рис. 30) .

Рис. 30. Солнечная батарея

Солнечная батарея есть у нас на даче, днем она накапливает электричество , а ночью начинает его отдавать (рис. 31) .

Рис. 31. Пример солнечной батареи

Пока на батарею попадают лучи солнца, бабочка не горит, а как только мы ее закрыли телефоном, она зажглась.

Еще солнечные батареи можно встретить дома в калькуляторах (рис. 32) .

Рис. 32. Калькуляторы с солнечной батареей

Вывод : Солнечные батареи не только производят электричество , но и накапливают его при помощи аккумулятора.

Таким образом, я пришла к выводу, что батарейки – это устройства, производящие электрическую энергию . Но одной батарейки недостаточно для того, чтобы лампочка или диод горели.

Для этого необходимо составить замкнутую электрическую цепь из электрических приборов . Папа научил меня собирать простейшую электрическую цепь .

Элементы электрической цепи соединяются проводами и подключаются к источнику питания.

Самая простая электрическая цепь состоит из :

1) источника тока;

2) потребителя электроэнергии (лампа, электробытовые приборы ) ;

3) замыкающего и размыкающего устройства (выключатель, кнопка) ;

4) соединительных проводов;

Чертежи, на которых показано, как электрические приборы соединены в цепь, называются электрическими схемами .

На электрических схемах все элементы электрической цепи имеют условное обозначение.

Вывод : если батарейка является частью электрической цепи , то поток электронов течет от отрицательного полюса батарейки к положительному через все элементы цепи .

Вот как работают мои игрушки !

3. Как электричество попадает в наш дом

Современному человеку электричество необходимо , чтобы работали станки на заводах , чтобы ездили поезда, трамваи. А дома - чтобы работали различные приборы , которые помогают быстро выполнить домашнюю работу . Но откуда и как к нам в дом приходит электричество ?

И вот что я узнала (рис. 33) :

1. Электричество для нашего дома производится на электростанции (ТЭЦ-17) .

3. Потом электричество попадает в трансформатор, что бы стать пригодным

для домашних электроприборов . попадает в наши дома

4. С трансформатора электричество по проводам приходит к нам в дом.

Рис. 33. Как электричество

Я попросила родителей показать мне, откуда и как (рис. 34) .





Рис. 34. Как электричество приходит в наш дом

Для получения такого большого количества электроэнергии строят электростанции .

Ток на электростанции получают с помощью особого устройства – генератора (рис. 35) .

Рис. 35. Генератор

Чтобы привести в действие генератор тока, используют разные виды энергии.

Тепловые получают энергию от сгорания топлива (газа, дизельного топлива или угля) . Такая станция есть у нас в городе Ступино (например, ТЭЦ-17) (рис. 36) .


Рис. 36. ТЭЦ-17 г. Ступино

На гидроэлектростанции для вращения турбины генератора используют энергию воды. Такую можно увидеть в городе Шатура (рис. 37) .

Рис. 37. Шатурская гидроэлектростанция

На атомной электростанции используют энергию тепла, выделяемой при ядерной реакции (рис. 38) .

Рис. 38. Ростовская атомная электростанция

А ещё есть ветровые электростанции (рис. 39, солнечные (рис. 40) и многие другие.

Рис. 39. Ветровая электростанция

Рис. 40. Солнечная электростанция

Когда вы нажимаете на выключатель лампы или какого-нибудь прибора, то электрический ток , пришедший от генератора, начинает течь по проводам, и прибор начинает действовать, а лампочка - светиться. Точно так же, как в моей электро-схеме (рис. 41) .

Рис. 41. Электрическая цепь работы лампочки

Производство электроэнергии требует больших затрат, поэтому очень важно беречь ее, не тратить зря.

Подведем итоги!

Почему же электричество опасно ? И почему батарейка для меня безвредна, а ток в розетке так опасен. Вот что я узнала :

Ток - это движение заряженных частиц в одном направлении. Частицы «бегут» не ровно, а колеблются (рис. 42) .

Рис. 42. Электрический ток

«Колеблются» слабо – напряжение маленькое (например, в батарейке) . «Удар» слабый (рис. 43) .

Рис. 43. Электрический ток в батарейке

Сильные колебания – напряжение большое. «Удар» сильный. При прикосновении к проводнику палец чувствует удар и боль (рис. 44) .

Рис. 44. Электрический ток в розетке

В розетке – 220 вольт, удар током приводит к травмам, ожогам и смерти.

Вот почему ток в розетке так опасен!

В результате всех проделанных исследований я сделала выводы :

1. Электричество - это общее название ВСЕХ явлений, так или иначе связанных со свойствами электрических зарядов .

2. Ток - это направленное движение электрических зарядов под действием сил электрической природы . То есть просто частный случай электричества .

3. Электричество в наш дом попадает по электрической цепи с электростанций .

4. Чем выше колебание частиц при движении, тем выше напряжение тока в цепи и опаснее его удар .

Будем бережно относиться к электричеству , будем помнить о той опасности, которую оно несёт в себе.

Источники :

1. Леенсон И. А. Загадочные заряды и магниты. Занимательное электричество . Изд-во : ОлмаМедиаГрупп, 2014 г;

2. http://www.kindergenii.ru ;

3. http://detskiychas.ru ;

4. http://www.kostyor.ru ;

5. http://pochemuha.ru ;

Марина Валерьевна Каюшникова

Исследовательский проект для детей подготовительной группы

Тема : "Его Величество Электричество ".

Проект долгосрочный - 3 месяца.

РСО -Алания, г. Моздок 2014 год

Актуальность.

Проект поможет в интересной и увлекательной форме сформировать у дошкольников простейшие представления о происхождении электричества , познакомит с историей электрической лампы и ее устройством. Кто действительно хочет понять все величие нашего времени, тот должен познакомиться с историей науки об электричестве . И тогда он узнает сказку, какой нет и среди сказок «Тысячи и одной ночи» . Первый раз электричество заметили еще совсем недавно, когда терли янтарной палочкой о шерсть животного. Древние греки называли янтарь электроном . Отсюда и пошло название электричество .

Одним из видов электричества является молния . Ее причиной является атмосферное электричество . И даже его люди научились использовать с помощью громоотвода. В 19 веке была изобретена первая лампочка. Это и послужило началом великой эры ЭЛЕКТРИЧЕСТВА .

В наше время электричество получают на специальных станциях. Оно может возникать из солнечной энергии, падающей воды, специальных устройств - генераторов, либо получаться при возникновении какой-либо химической реакции. Например, если к лимону присоединить два электрода - цинковый и медный , можно добыть электричество , достаточное для питания небольших часов. Подобная же схема получения электричества используется в батарейках и аккумуляторах. Также электричество может получаться при трении пластмассовой палочки о шерстяную поверхность. Именно так оно и было открыто, правда, первые ученые вместо пластмассы использовали янтарь. Электричество человек использует везде, на нем работают абсолютно все современные приборы. Поэтому профессия электрика всегда остается почетной и необычайно востребованной.

Более подрано с электричеством дети познакомятся в школе, на уроках физики, где им расскажут почти все тайны этого уникального, но вместе с тем опасного явления.

Цель проекта :

1. Познакомить детей с электричеством , историей его открытия. Рассказать, что электричество вырабатывают электростанцией , оно по проводам идет в каждый дом.

2. Познакомить с электрической лампочкой и ее устройством.

3. Знакомить с причиной появления статического электричества .

Задачи :

Расширять представление детей о том , где «живет» электричество и как оно помогает человеку;

Закрепить знания об электроприборах ;

Закрепить правила безопасного поведения в обращении с бытовыми электроприборами ;

Учить понимать связь между прошлым и настоящим, анализировать, сравнивать, познавать;

Развивать стремление к поисково-познавательной деятельности, способствовать овладению приемами практического взаимодействия с окружающими предметами.

Развивать мыслительную активность, наблюдательность;

Воспитывать желание экономить электроэнергию , развивать интерес к познанию окружающего мира.

Сроки реализации проекта – 3 месяца

Этапы реализации проекта

Подготовительный этап : изучение и анализ уровня развития у детей познавательных способностей, умений и навыков исследовательской деятельности и творческого проектирования . Выявление уровня и эффективности планирования воспитательно-образовательной работы по данному вопросу, анализ организации предметно-развивающей среды, анализ эффективности работы с родителями по данному вопросу.

Моделирующий этап : подбор методик, форм работы с детьми, педагогами ДОУ, родителями воспитанников, школой, городской детской библиотекой, городским краеведческим музеем, и другими организациями, создание эффективной предметно-развивающей среды в группах , создание информационного пространства для родителей, подбор диагностических методик.

Основной : осуществление поставленных задач, наработка диагностического, методического, практического материала, определение наиболее эффективных методов и приемов работы с детьми, родителями, педагогами ДОУ по организации естественнонаучных наблюдений и экспериментов с детьми.

Контрольный : анализ проделанной работы, диагностика уровня развития исследовательских навыков детей , определение уровня компетенции родителей по организации естественнонаучных наблюдений и экспериментов с детьми дома, желание сотрудничать с педагогами ДОУ.

Предполагаемый результат

1. Информация о результатах реализации проекта , размещенная на информационном сайте ДОУ.

2. Представление опыта работы на педагогическом совете ДОУ.

3. Организация фотовыставки «

4. Создание фотоальбома»

5. Организация групповой выставки «

6. Проведение праздника совместно с родителями воспитанников «

В результате реализации проекта дети будут знать :

Понятие электричество ;

Что, электричество вырабатывается электростанцией ;

Что, ток идет в каждый дом по проводам;

Где «живет» электричество ;

Названия электрических бытовых приборов ;

Выключатель регулирует подачу электроэнергии к приборам ;

Правила безопасного обращения с электроприборами ;

Историю появления электрической лампы , ее устройство;

Что электроэнергию надо беречь , экономить, выключать лишние приборы, соблюдать меры предосторожности;

Причину появления статического электричества ;

Простейшие опыты с электричеством .

В результате реализации проекта дети будут уметь :

Выполнять действия по организации опытов с электричеством ;

Задавать вопросы, искать ответы;

Видеть проблему по определенной теме;

Формулировать цель, планировать задачи;

Выдвигать гипотезы и проверять их;

Отбирать средства и материалы для самостоятельной деятельности;

Проводить посильные опыты и делать соответствующие выводы;

Фиксировать этапы действий и результаты графически;

Осуществлять сбор информации из разных источников : справочники, энциклопедии, интернет, поиск единомышленников;

Применять теоретические знания в практической деятельности при обращении с живыми организмами;

Оформлять результаты наблюдений в виде простейших схем, знаков, рисунков, описаний, выводов;

Защищать свои исследования пред сверстниками .

Основные направления в работе :

работа с детьми

работа с родителями

работа с сотрудниками

работа по усовершенствованию предметно-развивающей среды

Механизм реализации проекта :

Работа с детьми :

Специальные занятия по познавательному развитию

Экспериментальная деятельность

Интегрированные занятия

Организация сюжетно-ролевых игр

Дидактические игры

Трудовая деятельность

Художественно-речевая, изобразительная деятельность

Чтение художественных произведений, беседы.

Создание музея «Электричество »

С сотрудниками :

Семинар-практикум «Как познакомить детей с электричеством »

Консультация «Как создать "Музей Света» .

Разработка методических материалов в рамках темы (перспективное планирование, анкеты) .

С родителями :

Анкетирование

Организация совместной деятельности по изготовлению атрибутов, игр, домашних заданий

Оформление папок передвижек

Индивидуальные беседы

Выставка иллюстраций, фото

Выставка детских рисунков

Сначала мы провели с детьми беседы на темы : «Что мы знаем об электричестве » , «Электричество живет повсюду » .

Нарисовали с детьми схему «Как электричество попадает в наш дом » .

Познакомились с историей открытия электричества . Для этого мы создали «Музей Света» , где собрали иллюстрации, фотографии, портреты и предметы по теме.

Рассказали детям, как работают электроприборы , о правилах безопасности при их использовании. Для закрепления сделали настольно-печатные игры : «Собери картинку» , «Найди пару» .


Для проведения экспериментов и опытов дополнили наш экспериментальный уголок новыми приборами, атрибутами для работы по теме. Напечатали цикл опытов по теме «Электричество » .

Но самым интересным для детей оказалось – это знакомство со статическим электричеством .



Опыты заинтересовали детей . Они с огромным удовольствием участвовали в них. Приятно было слышать от родителей о том, как дети пытались повторить их дома.

На протяжении многих веков люди не подозревали о существовании электричества. А молния воспринималась как проявление необъяснимых божественных сил. Как же удавалось людям, живущим в окружении электрических и магнитных полей, совершенно их не замечать?
Замечали, конечно, замечали, но не находили объяснения. Меня эта тема впервые заинтересовала на уроке окружающего мира, когда учитель рассказывал, как электричество приходит к нам в дом? А дома? Встречаемся мы с электричеством? Нет, не тем, что приходит по проводам с электростанций? Мне стало интересно, а как объяснить явления, которые наблюдают многие люди, причесываясь перед зеркалом, когда волосы притягиваются к расчёске. А когда снимаешь свитер в темноте, можно наблюдать, как между человеком и свитером проскакивают искры, и слышится тихий треск. А сверкающая молния?
Оказалось причина этих явлений - электричество. А можно ли самой, опытным путем, «добывать» электричество? Что это такое?

Цель проекта: выяснить, что такое электричество, электрический ток, электрическое напряжение, когда оно возникает.

Объектом исследования является процесс появления электричества.

Предметом исследования является технология получения электричества в домашних условиях на основе опытов, наблюдений, сравнений и обобщений.

Мы выдвигаем следующую гипотезу : что электричество является составной частью природы, окружающего мира.

Задачи исследования.
1. Изучить и проанализировать литературу по данному вопросу;
2. Провести опыты, доказывающие существование электричества.
3. Сформулировать ответы на поставленные в начале вопросы.

Методы исследования:
Теоретический (анализ литературы)
эксперимент

Этапы исследования:
Провести эксперименты с телами из разных веществ (стекло, пластмасса, дерево) и легкими предметами (бумажные кусочки произвольной формы).
Провести опыты со «спрутом» и «трусишкой», объясняющие существование двух видов электрических зарядов.
Механизм работы разных видов электрического тока проверить на опытах с полиэтиленом и тетрадным листом.
Провести опыт с электрической цепью, объясняющий, как и где живёт электричество, почему горит электрическая лампочка
Экспериментально доказать, что электричество существует в природе.

Практическая значимость работы определяется возможностью использования материалов при проведение опытов на уроках окружающего мира, во внеурочной деятельности учащихся.

История изучения электричества
Электричество было известно людям с самых давних времен.
Знания о таком явлении как электричество были у людей уже много тысяч лет назад. Ведь ещё древний человек заметил удивительное свойство натертой янтарём шерсти притягивать нитки, пыль и другие мелкие предметы.
Мы узнали, что древние греки очень любили украшения и мелкие поделки из янтаря. Этот камень они называли за его цвет и блеск «ЭЛЕКТРОН», что значит «солнечный камень». О том, что янтарь мог электризоваться знали давно. Впервые исследованием этого явления занялся знаменитый философ древности ФАЛЕС МИЛЕТСКИЙ. Об этом есть даже легенда.
«Дочь Фалеса пряла шерсть янтарным веретеном. Как-то, уронив его в воду, девушка стала обтирать его краем своего шерстяного хитона и заметила, что к веретену пристало несколько шерстинок. Думая, что они прилипли, она принялась вытирать его ещё сильнее. И что же? Шерстинок налипало тем больше, чем сильнее натиралось веретено. Девушка обратилась за разъяснением к отцу. Фалес понял, что причина в веществе, из которого сделано веретено. В следующий раз он накупил различных янтарных изделий и убедился, что все они, будучи натёрты шерстяной материей, притягивают лёгкие предметы, как магнит притягивает железо».
Гораздо позже данное свойство было замечено и за другими веществами, такими как сера, сургуч и стекло. И по причине того, что «янтарь» по-гречески звучал как «электрон», эти свойства начали называться электрическими.
Первые шаги к пониманию природы электричества были сделаны в середине XVIII века, когда французский физик Кулон открыл закон о взаимодействии электрических зарядов.
Упорядоченное движение свободных электрически заряженных частиц называется электрическим током.
В конце XVIII века итальянский физик Алессандро Вольта создал первый источник тока и дал физикам возможность проводить опыты с электрическим током.
Правда, практически измерять электричество человек научился только в начале 19 века. Потом понадобилось еще 70 лет до того момента, когда в 1872 году русский ученый А.Н. Лодыгин изобрел первую в мире электрическую лампочку накаливания.

Что такое электричество
Электричество - это одна из форм энергии. Оно вырабатывается, например, в батарейках, но главный его источник - электростанции, откуда оно поступает в наши дома по толстым проводам, или кабелям. Попробуй представить себе, как течет вода в реке. Точно так же движется по проводам электричество. Вот почему электричество называется электрическим током. Электричество, которое никуда не движется, называется статическим.
Вспышка молнии - это мгновенный разряд статического электричества, скопившегося в грозовых тучах. В таких случаях электричество движется по воздуху от тучи к туче или от тучи - вниз, к земле.
Возьми пластмассовую расческу и несколько раз быстро и энергично проведи ею по волосам. Теперь поднеси расческу к кусочкам бумаги, и ты увидишь, что она притянет их, как магнит. Когда ты причесываешься, в расческе накапливается статическое электричество. Предмет, заряженный статическим электричеством, может притягивать другие предметы.
Электрически ток движется по проводам только в том случае, если они соединены в замкнутое кольцо - электрическую цепь. Возьмем, например, фонарик: провода, соединяющие батарейку, лампочку и выключатель, образуют замкнутую цепь. Электрическая цепь на расположенном выше рисунке действует по тому же принципу. Пока по цепи идет ток, лампочка горит. Если цепь разомкнуть - скажем, отсоединить провод от батарейки, - лампочка погаснет.
Материалы, которые пропускают электрический ток, называются проводниками. Из таких материалов - в частности, из меди, которая хорошо проводит электричество, - делают электрические провода. Провод под током представляет опасность для человека (наше тело - тоже проводник!), поэтому провода покрывают пластмассовой оплеткой. Пластмасса - это изолятор, то есть материал, который не пропускает ток.

ВНИМАНИЕ! Электричество опасно для жизни. С электроприборами и розетками следует обращаться очень осторожно.

Как узнать, какие материалы являются проводниками, а какие изоляторами? Проведем один несложный опыт. Все, что тебе для этого понадобится, показано на рисунке выше. Сначала соберём электрическую цепь.
Отсоединим один из проводов. В результате цепь разомкнется и лампочка погаснет. Теперь возьмём скрепку и положим ее так, чтобы восстановить цепь. Загорелась лампочка или нет?
Попробуем положить вместо скрепки что-нибудь другое, например вилку или ластик. Если лампочка загорится, значит, это проводник, если не загорится - изолятор.
Электричество вырабатывается на электростанциях. Оттуда оно поступает в города и села по линиям электропередачи - проводам, которые натянуты на высоких мачтах. Непосредственно в дома электричество поступает по проводам, проложенным под землей.
Выяснилось, что электричество возникает, когда при трении веществ происходит разделение зарядов на два вида — положительные и отрицательные. Одноименные (одинаковые) заряды отталкиваются, разноимённые (противоположные) —притягиваются.
Двигаясь по металлической проволоке — проводнику — заряды создают электрический ток.
Ток бежит по проводам, Свет несет в квартиру нам. Чтоб работали приборы, Холодильник, мониторы. Кофемолки, пылесос, Ток энергию принес.
Вывод: Учёные установили, что электричество - это поток мельчайших заряженных частиц - электронов.
Поток заряженных частиц в одном направлении учёные назвали электрическим током.

Источники тока или откуда берется электричество
Первый химический источник тока был создан итальянским ученым Алессандро Вольта приблизительно в 1800 году. Первая электрическая батарея (рисунок) Батарея Вольта, или Вольтов столб, была составлена из медных и цинковых кружков,
Сейчас мы получаем электричество благодаря большим электростанциям. На электростанциях есть генераторы — большие машины, которые работают от источника энергии. Обычно источник - это тепловая энергия, которую получают при нагревании воды (пар). А для нагревания воды используют уголь, нефть, природный газ или ядерное топливо. Пар, который образуется при нагревании воды, приводит в действие огромные лопасти турбины, а те в свою очередь запускают генератор.
Энергию можно получить, используя силу воды, падающей с большой высоты: с плотин или водопадов (гидроэнергетика).
Как источник питания для генераторов можно использовать силу ветра или тепло Солнца, но к ним прибегают не часто.
Далее работающий генератор при помощи огромного магнита создаёт поток электрических зарядов (ток), который проходит по медным проводам. Чтобы передавать электричество на большие расстояния, необходимо увеличить напряжение. Для этого используют трансформатор — устройство, которое может повышать и понижать напряжение. Теперь электричество с большой мощностью (до 10000 вольт и более) по огромным кабелям, которые находятся глубоко под землёй или высоко в воздухе, движется к месту назначения. Перед тем, как попасть в квартиры и дома, электричество проходит через другой трансформатор, который понижает его напряжение. Теперь готовое к использованию электричество движется по проводам к необходимым объектам. Количество использованного электричества регулируется специальными счётчиками, которые прикрепляются к проводам, которые проложенные через стены и полы. Подводят электричество в каждую комнату дома или квартиры.

Где живет электричество
Электрические явления были непонятны и опасны для жизни, они вселяли страх. Но постепенно опыт накапливался, и люди начали понимать некоторые из них, научились создавать и использовать электричество в своих нуждах.
Мы знаешь, где оно живет: в проводах, подвешенных на высоких мачтах, в комнатной электропроводке и еще в батарейке карманного фонаря. Но все это электричество домашнее, ручное. Человек его изловил и заставил работать. Оно потрескивает в никелированном теле электроутюга. Сияет в лампочке. Гудит в электродвигателях. Весело распевает в радиоприемниках. Да мало ли что еще может делать электричество.
Современная жизнь немыслима без радио и телевидения, телефонов и телеграфа, осветительных и нагревательных приборов, машин и устройств, в основе которых лежит возможность использования электрического тока.
Возможности электричества поражали: передача энергии и разнообразных электрических сигналов на большие расстояния, превращение электрической энергии в механическую, тепловую, световую …
Ну, а есть ли на свете электричество дикое, неприрученное? Такое, которое живет само по себе? Да, есть. Оно вспыхивает ослепительным зигзагом в грозовых тучах. Оно светится на мачтах кораблей в душные тропические ночи. Но оно есть не только в облаках, и не только под тропиками. Тихое, незаметное, оно живет всюду. Даже у тебя в комнате. Ты часто держишь его в руках и сам об этом не знаешь. Но его можно обнаружить.

2.1 Электрический ток и его использование

2.2 Электрические схемы

2.3 Электрические приборы

    Заключение

    Список литературы и сайтов.

Введение.

Одним из первых, чьё внимание привлекло электричество, был греческий философ Фалес Милетский, который в VII веке до н. э. обнаружил, что потёртый о шерсть янтарь приобретает свойства притягивать лёгкие предметы. Однако долгое время знание об электричестве не шло дальше этого представления

В 1600 году появился сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания.

В 1729 году англичанин Стивен Грей провёл опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество.

В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шёлк и смолы о шерсть.

В 1745 г. голландец Питер ван Мушенбрук создаёт первый электрический конденсатор - Лейденскую банку. Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные - Г. В. Рихман и М. В. Ломоносов.

Первую теорию электричества создаёт американец Бенджамин Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний. Изучение электричества переходит в категорию точной науки после открытия в 1785 году закона Кулона.

Майкл Фарадей - основоположник учения об электромагнитном поле.

Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока - гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой.

В 1802 году Василий Петров обнаружил вольтову дугу.

В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника.

Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).

Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создаёт на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей. Анализ явления электролиза привёл Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы - частицы материи. «Атомы материи каким-то образом одарены электрическими силами», - утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель - проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка английским физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.

В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).

В 1897 году Джозеф Томсон открывает материальный носитель электричества - электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.

В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединённую теорию электрослабых взаимодействий.

Электричество.

Электрический ток и его использование.

Электри́ческий ток - направленное (упорядоченное) движение частиц или квазичастиц.

Такими частицами могут являться:

в металлах - электроны,

в электролитах - ионы (катионы и анионы)

В газах - ионы и электроны,

в вакууме при определённых условиях - электроны,

в полупроводниках - электроны и дырки (электронно-дырочная проводимость).

Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

нагревание проводников (не происходит в сверхпроводниках);

изменение химического состава проводников (наблюдается преимущественно в электролитах);

создание магнитного поля (проявляется у всех без исключения проводников).

В теории электрических цепей за ток принято считать направленное движение носителей заряда в проводящей среде под действием электрического поля.

Током проводимости (просто током) в теории электрических цепей называют количество электричества, протекающего за единицу времени через поперечное сечение проводника: i=q/t, где i - ток. А; q = 1,6·109 - заряд электрона, Кл; t - время, с.

Это выражение справедливо для цепей постоянного тока. Для цепей переменного тока применяют так называемое мгновенное значение тока, равное скорости изменения заряда во времени: i(t)= dq/dt.

Электрический ток возникает тогда, когда на участке электрической цепи появляется электрическое поле, или разность потенциалов между двумя точками проводника. Разность потенциалов между двумя точками электрической цепи называют напряжением или падением напряжения на этом участке цепи.

Электрические схемы

Простейшая электрическая цепь может содержать всего три элемента:

Источник

Соединение проводов.

Однако реальные работающие цепи намного сложнее. Помимо основных элементов они содержат различные выключатели, пускатели, устройства защиты, реле, электроизмерительные приборы, розетки, вилки и др.

При сборки электрических цепей электромонтажник руководствуется принципиальной электрической схемой и монтажной электрической схемой

Принципиальная электрическая схема

Это схема, в которой каждая деталь обозначается графически, и после изучения которой, нам становится ясно, каким образом они все соединяются между собой.

Принципиальные схемы являются важнейшими из схем, так как они позволяют понять, как функционирует устройство в целом.

Вы не найдете на принципиальных схемах изображения самого устройства, с клеммами или выводами, к которым паяются или зажимаются под винтовое соединение провода, для этого служат монтажные схемы.

Мантажная электрическая схема

Монтажная схема (схема соединений) определяет размещение радиодеталей и устройств, жгутов и проводов на шасси, расшивочных панелях, а также места и точки создания электрического контакта.

Монтажная схема составляется в соответствии с принципиальной схемой изделия и является главным документом при электрическом монтаже аппаратуры.

Составляя монтажную схему, предусматривают такое размещение каскадов и узлов, чтобы соединительные провода между ними были наименьшей длины, а их прокладка исключала электрические наводки и давала удобный доступ ко всем элементам схемы. Контроль выполненного монтажа производится по монтажной и принципиальной схемам

Все элементы, входящие в состав изделия, имеют графическое изображение, схожее с общим видом детали, и тот же номер, что на принципиальной схеме.

Провода в электромонтажных схемах нумеруются двойными числами: первое число обозначает порядковый номер электрической линии, имеющей один и тот же потенциал, второе - порядковый номер проводника, принадлежащий одной и той же линии.

Все провода, присоединенные к одной клемме, имеют одинаковые номера.

Многожильные кабели также нумеруются и номер вписывают на изображенном конце кабеля.

Марка кабеля, количество жил и их сечение, количество занятых жил - указываются на схеме вдоль линии кабеля. Каждая жила имеет свой номер в пределах кабеля.

Электрические приборы.

Электри́ческий прибо́р или электроприбор - это техническое устройство, приводимое в действие с помощью электричества и выполняющее некоторую полезную работу, которая может выражаться в виде механической работы, выделения теплоты и др. или предназначенное для обеспечения работы других электроприборов.

Электрические приборы это различные чайники, кофеварки, мясорубки, пароварки, мультиварки, микроволновые печи, фены, утюги, напольные вентиляторы, увлажнители воздуха и т.д. Все электрические приборы имеют освидетельствование лаборатории технического контроля, а также инструкции или техническое описание по его применению.

В настоящее время широко используются электрические отопительные приборы. Они позволяют поддерживать нужную температуру в любых помещениях производственного или бытового назначения. Обычно они имеют несложную конструкцию, небольшие габариты, экономят электроэнергию. К ним можно отнести: электрокамины, электрические калориферы, радиаторы, отражающие печи, нагреватели напольные, конвекторы и др.

В электроэнергетике электроприбор рассматривается как «потребитель», «нагрузка» или «активное сопротивление».

Бытовой электроприбор - это электрическое или электромеханическое устройство, выполняющее некоторую работу в домашнем хозяйстве, например, приготовление пищи, уборка и т. д. Бытовые электроприборы являются разновидностью бытовой техники.

Бытовые электроприборы по традиции разделяют на крупные и мелкие.

Крупные бытовые электроприборы отличаются достаточно большими размерами и массой, чтобы их переноска была затруднена. Они устанавливаются в определённом месте и подключаются к сети электроснабжения.

Примеры крупных бытовых электроприборов:

    кондиционер;

    холодильник;

    стиральная машина.

Мелкие бытовые электроприборы портативны. При использовании их устанавливают на столах и других поверхностях или держат в руках. Часто они оснащены ручками для удобства переноски. Мелкие бытовые электроприборы могут работать как от сети, так и от батареек.

Примеры мелких бытовых электроприборов:

    тостер;

    миксер;

    фен.

Заключение.

Использование электричества обеспечивает довольно удобный[источник не указан 510 дней] способ передачи энергии, и в силу этого оно было адаптировано для существенного и по сей день растущего спектра практических приложений.

Одним из первых общедоступных способов применения электричества было освещение; условия для этого оказались созданы после изобретения лампы накаливания в 1870-х годах. Создателем лампы накаливания является русский электротехник А.Н. Лодыгин.

Первая лампа накаливания представляла собой замкнутый сосуд без воздуха с угольным стержнем.. Хотя с электрификацией были сопряжены свои риски, замена открытого огня на электрическое освещение в значительной степени сократила количество возгораний в быту и на производстве.

В целом, начиная с XIX века, электричество плотно входит в жизнь современной цивилизации.

Электричество используют не только для освещения, но и для передачи информации (телеграф, телефон, радио, телевидение), а также для приведения механизмов в движение (электродвигатель), что активно используется на транспорте (трамвай, метро, троллейбус, электричка) и в бытовой технике (утюг, кухонный комбайн, стиральная машина, посудомоечная машина).

Моё личное мнение о электричестве

Многие люди давно задаются вопросом откуда,как и для чего нам электричество. Некоторые люди обращаться с этим вопросом к своим гаджетам но и в них ведь тоже есть электричество. Куда не посмотри везде есть электричество. Например возьмём часы,ну подумаешь часы вещь которая может работать без питания энергии тоже работает от электричества.

У нас в доме полно приборов которые без электричества не могут работать. Даже книги уже электроные.

Везде есть электричество,даже на сегодняшний день изобрели машину которая ездит не на бензине а на электричестве.

Да и машина всё равно зависит от электричества

Подведём итог. Без электричества люди в принципе не могут нечего делать не работать, не читать, не ездить куда-то и тд.

Так что электричество сама нужная вещь на земле.

Список литературы и сайтов.

Сайты на которых я брала материал:

Радио любитель

Википедия

Электро –гуру

Электрик –дом

Радио – скот

Список литературы

Технология 8 класс Н.В Матяш